Molecular diversity and function of K+ channels in airway and alveolar epithelial cells.
نویسندگان
چکیده
Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is intriguing. As detailed in the present review, K(+) channels are located at both the apical and basolateral membranes in the respiratory epithelium, where they mediate K(+) currents of diverse electrophysiological and regulatory properties. The main recognized function of K(+) channels is to control membrane potential and to maintain the driving force for transepithelial ion and liquid transport. In this manner, KvLQT1, KCa and K(ATP) channels, for example, contribute to the control of airway and alveolar surface liquid composition and volume. Thus, K(+) channel activation has been identified as a potential therapeutic strategy for the resolution of pathologies characterized by ion transport dysfunction. K(+) channels are also involved in other key functions in lung physiology, such as oxygen-sensing, inflammatory responses and respiratory epithelia repair after injury. The purpose of this review is to summarize and discuss what is presently known about the molecular identity of lung K(+) channels with emphasis on their role in lung epithelial physiology.
منابع مشابه
Molecular identity and function in transepithelial transport of K(ATP) channels in alveolar epithelial cells.
K(+) channels play a crucial role in epithelia by repolarizing cells and maintaining electrochemical gradient for Na(+) absorption and Cl(-) secretion. In the airway epithelium, the most frequently studied K(+) channels are KvLQT1 and K(Ca). A functional role for K(ATP) channels has been also suggested in the lung, where K(ATP) channel openers activate alveolar clearance and attenuate ischemia-...
متن کاملThe distribution of serotonin-immunoreactive cells in larynx, trachea and bronchi of goat (Capra aegagrus) and bovine (Bos taurus)
The respiratory tract contains numerous peptides secreted from special pulmonary epithelial cells whichare called endocrine cells. The function of neuroendocrine cells is modulated by amines. Serotonin has strong vasomotor and bronchomotor effects in the airway mucosa. The objective of this study was to determine presence and distribution of serotonin-positive endocrine cells in respiratory tra...
متن کاملChloride and potassium channel function in alveolar epithelial cells.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amilor...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 296 2 شماره
صفحات -
تاریخ انتشار 2009